

High-voltage High-current Darlington Transistor Arrays

ULN2001D

General Description

The ULN2001D is high-voltage high-current Darlington transistor arrays each containing three open collector common emitter pairs. Each pair is rated at 500mA. Suppression diodes are included for inductive load driving, the inputs and outputs are pinned in opposition to simplify board layout.

These devices are capable of driving a wide range of loads including solenoids, relays, DC motors, LED displays, filament lamps, thermal print-heads and high-power buffers.

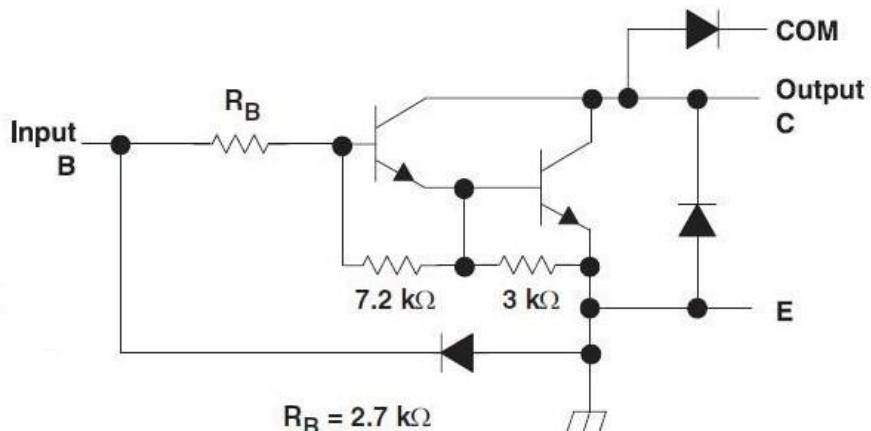
The ULN2001D is available in both a small outline 8-pin package (DIP8, SOP8).

SOP-8

DIP-8

Features

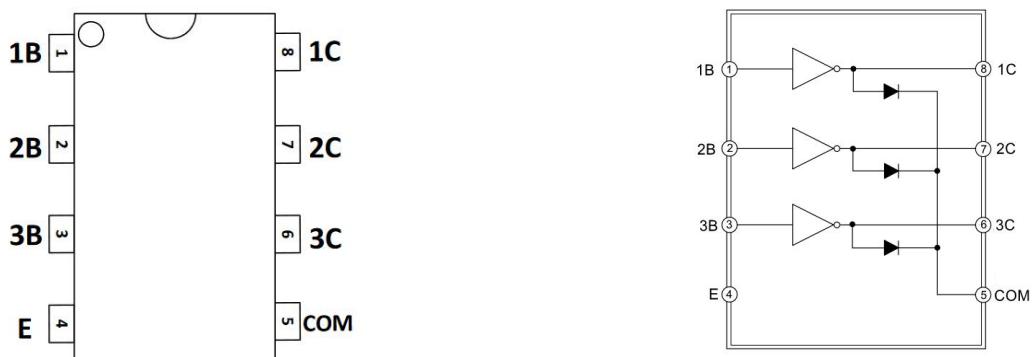
- 500mA-Rated Collector Current(single output)
- High-Voltage Outputs: 50V
- Output Clamp Diodes
- Inputs Compatible With Various Types of Logic
- Relay-Driver Applications


Applications

- Relay drive
- Indicator light drive
- Display screen driver

Order information

Product model	Package	Manner of packing	Minimum packing quantity
ULN2001D	SOP-8	REEL	3500
ULN2001DN	DIP-8	TUBE	50


Functional Block Diagram

Note: All resistor values shown are nominal.

The collector-emitter diode is a parasitic structure and should not be used to conduct current. If the collector(s) go below ground an external Schootky diode should be added to clamp negative undershoots.

Pin Configuration And Connection Diagram

Pin Descriptions

Pin Number	Pin Name	Function
1	1B	Input pair1
2	2B	Input pair2
3	3B	Input pair3
4	E	Common Emitter (ground)
5	COM	Common Clamp Diodes
6	3C	Output pair3
7	2C	Output pair2
8	1C	Output pair1

Absolute Maximum Ratings ⁽¹⁾

At 25°C free-air temperature (unless otherwise noted)

Symbol	Parameter		Min	Max	Unit
V _{CC}	Collector to emitter voltage			50	V
V _R	Clamp diode reverse voltage ⁽²⁾			50	V
V _I	Input voltage ⁽²⁾			30	V
I _{CP}	Peak collector current	See typical		500	mA/ch
I _{OK}	Output clamp current			500	mA
I _{TE}	Total emitter-terminal current			-1.5	A
P _D	Power Dissipation	SOP-8		0.625	W
		DIP-8		0.75	
T _A	Operating free-air temperature	ULN2001D	-40	+105	°C
θ _{JA}	Thermal Resistance Junction-to-Ambient ⁽³⁾			63	°C/W
θ _{JC}	Thermal Resistance Junction-to-Case ⁽⁴⁾			12	
T _J	Operating virtual junction temperature			+150	°C
T _{STG}	Storage temperature range		-65	+150	°C
ESD	Human Body Mode		--	3000	V

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- (2) All voltage values are with respect to the emitter/substrate terminal E, unless otherwise noted.
- (3) Maximum power dissipation is a function of T_{J(max)}, θ_{JA}, and T_A. The maximum allowable power dissipation at any allowable ambient temperature is P_D = (T_{J(max)} - T_A)/θ_{JA}. Operating at the absolute maximum T_J of 150°C can affect reliability.
- (4) Maximum power dissipation is a function of T_{J(max)}, θ_{JC}, and T_A. The maximum allowable power dissipation at any allowable ambient temperature is P_D = (T_{J(max)} - T_A)/θ_{JC}. Operating at the absolute maximum T_J of 150°C can affect reliability.

Recommended Operating Conditions

Symbol	Parameter	Min	Max	Unit
V _{CC}	Collector to Emitter voltage	-	50	V
T _A	Operating Ambient Temperature	-40	+85	°C
V _I	Input voltage	0	12	V
I _{out}	Output current		350	mA/ch

Note: Always use semiconductor devices within their recommended operating condition ranges.

Operation outside these ranges may adversely affect reliability.

Electrical Characteristics

Parameter		Test Figure	Test Conditions		ULN2001D			Unit
					MIN	TYP	MAX	
V _{I(on)}	On-state input voltage	Figure 6	V _{CE} = 2 V	I _C = 200 mA	--	--	2.4	V
				I _C = 250 mA	--	--	2.7	
				I _C = 300 mA	--	--	3	
V _{CE(sat)}	Collector-emitter saturation voltage	Figure 5	I _I = 250 μ A, I _C = 100 mA	--	0.9	1.1	V	
			I _I = 350 μ A, I _C = 200 mA	--	1	1.3		
			I _I = 500 μ A, I _C = 350 mA	--	1.2	1.6		
I _{CEX}	Collector cutoff current	Figure 1	V _{CE} = 50 V	I _I = 0	--	--	50	μ A
		Figure 2	V _{CE} = 50 V, T _A = +105°C	I _I = 0	--	--	100	
V _F	Clamp forward voltage	Figure 8	I _F = 350 mA		--	1.7	2	V
I _{I(off)}	Off-state input current	Figure 3	V _{CE} = 50 V, I _C = 500 μ A		50	65	--	μ A
I _I	Input current	Figure 4	V _I = 3.85 V		--	0.93	1.35	mA
I _R	Clamp reverse current	Figure 7	V _R = 50 V	T _A = 25°C	--	--	50	μ A
				T _A = 70°C	--	--	100	
C _i	Input capacitance		V _I = 0, f = 1 MHz		--	15	25	pF

Switching Characteristics

(TA = +25°C, unless otherwise specified)

Parameter		Test Conditions	ULN2001D			Unit
			MIN	TYP	MAX	
t _{PLH}	Propagation delay time, low- to high-level output	Figure 9	--	0.25	1	μ s
t _{PHL}	Propagation delay time, high- to low-level output	Figure 9	--	0.25	1	μ s
V _{OH}	High-level output voltage after switching	V _S = 50 V, I _O = 300 mA, Figure 9	V _S =20	--	--	mV

Parameter Measurement Information

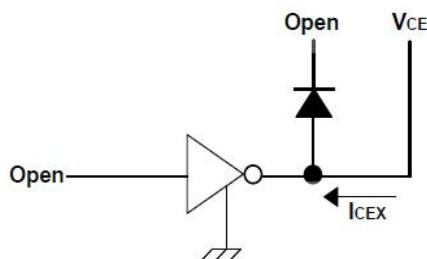


Fig.1 ICEX Test Circuit

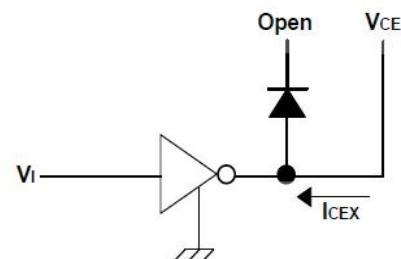


Fig.2 ICEX Test Circuit

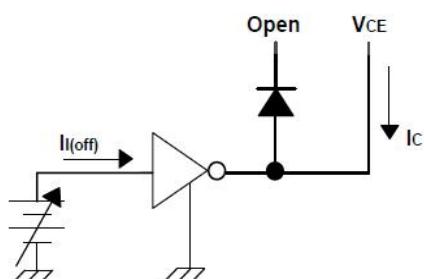


Fig.3 I(off) Test Circuit

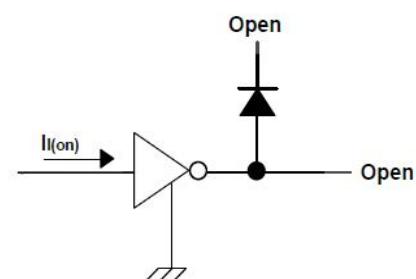


Fig.4 I(on) Test Circuit

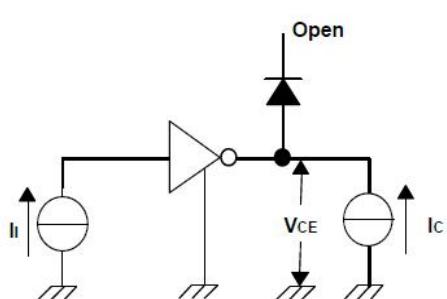


Fig.5 hFE , VCE(sat) Test Circuit

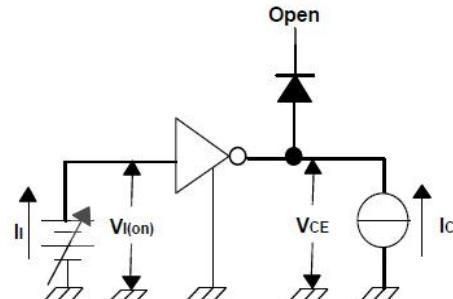


Fig.6 V(on) Test Circuit

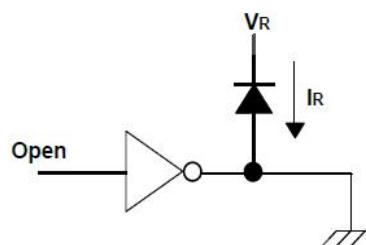


Fig.7 IR Test Circuit

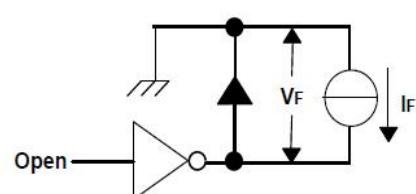
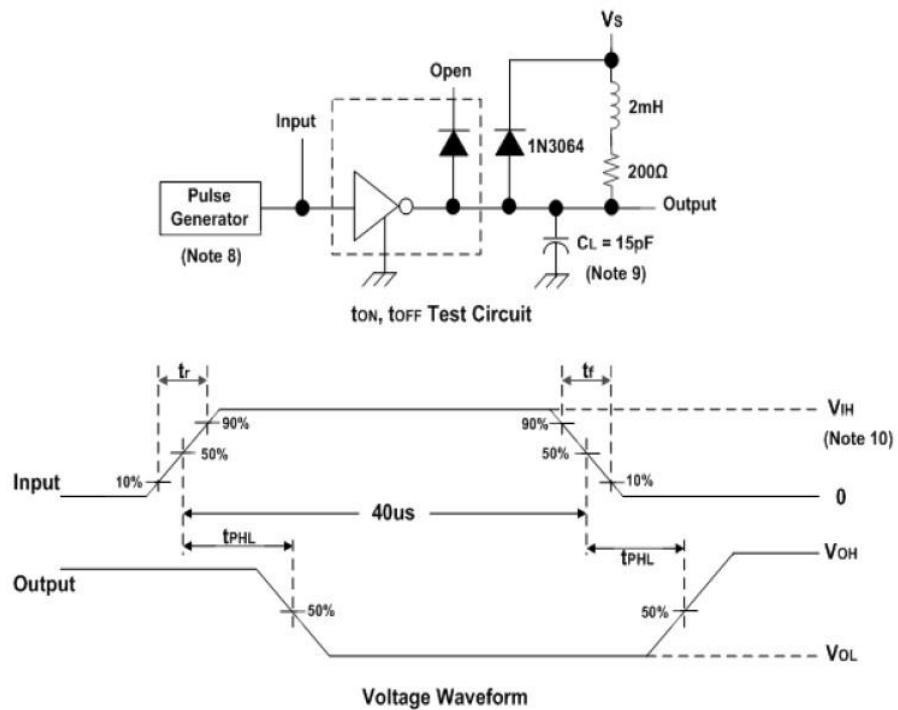
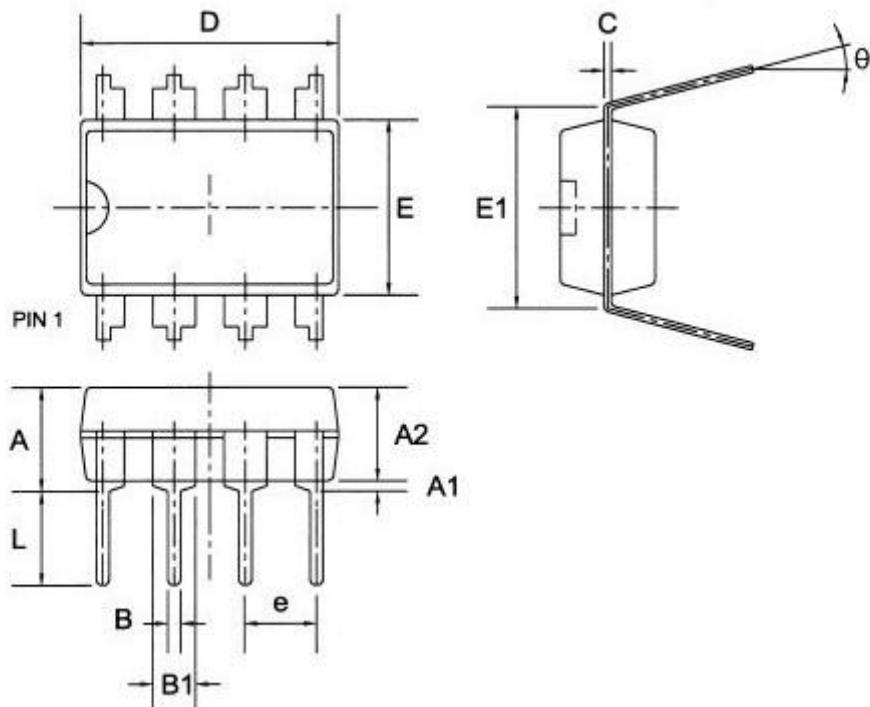
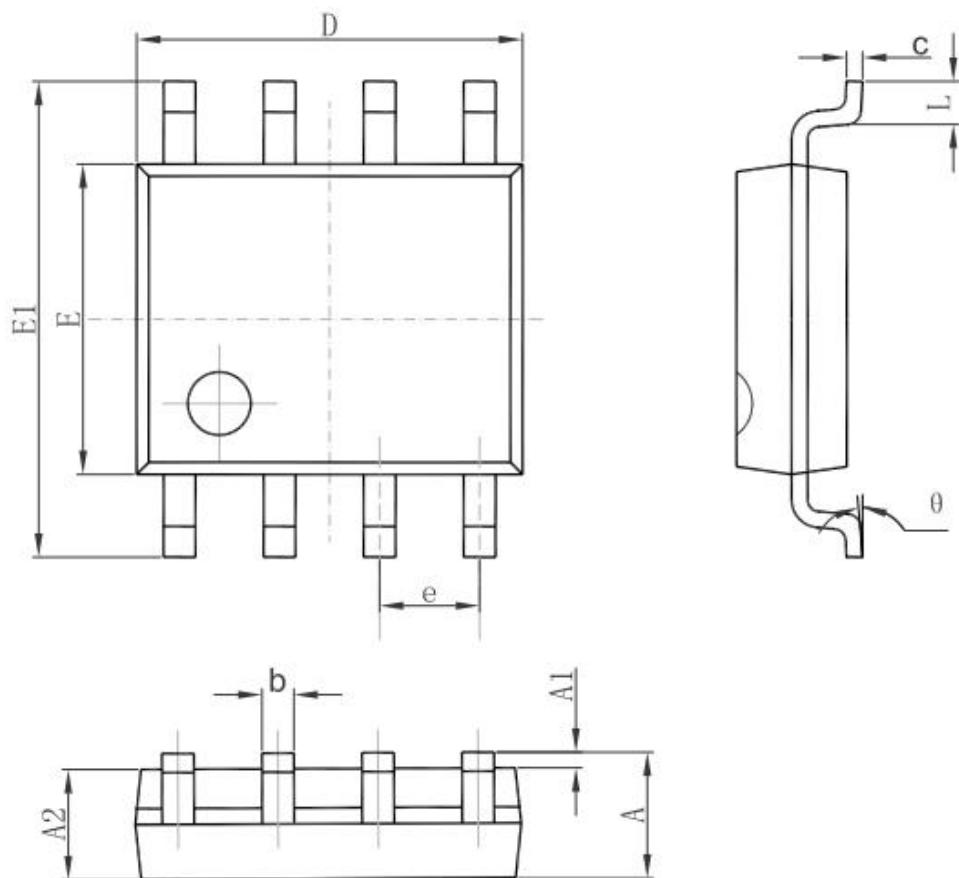


Fig.8 VF Test Circuit




Fig. 9 Latch-Up Test Circuit and Voltage Waveform

Notes:


8. The pulse generator has the following characteristics: Pulse Width=12.5Hz, output impedance 50Ω , $tr \leq 5\text{ns}$, $tf \leq 10\text{ns}$.
9. C_L includes probe and jig capacitance.
10. $V_{IH}=3\text{V}$

Package Information

DIP-8 Outline Dimensions

Symbol	Dimension (mm)			Symbol	Dimension (mm)		
	MIN	NOM	MAX		MIN	NOM	MAX
A	-	-	4.31	D	8.95	9.20	9.45
A1	0.38	-	-	E	6.15	6.4	6.65
A2	3.15	3.4	3.65	E1	-	7.62	-
B	0.38	0.46	0.51	e	-	2.54	-
B1	1.27	1.52	1.77	L	3.00	3.30	3.60
C	0.2	0.25	0.3		0°	-	15°

SOP-8 Outline Dimensions

Symbol	Dimensions in Millimeters		Dimensions in Inches	
	Min	Max	Min	Max
A	1.350	1.750	0.053	0.069
A1	0.100	0.250	0.004	0.010
A2	1.350	1.550	0.053	0.061
b	0.330	0.510	0.013	0.020
c	0.170	0.250	0.006	0.010
D	4.700	5.100	0.185	0.200
E	3.800	4.00	0.150	0.157
E1	5.800	6.200	0.228	0.244
e	1.270(BSC)		0.050(BSC)	
L	0.400	1.270	0.016	0.050
θ	0°	8°	0°	8°

Special Version

The company reserves the right of final interpretation of this specification.

Version Change Description

Versions: V1.0

Writer: XinCHun Li

Time: 2025.12.15

Modify the record:

1. Editio princeps

Statement

The information in the usage specification is correct at the time of publication, Shanghai Siproin Microelectronics Co.,Ltd has the right to change and interpret the specification, and reserves the right to modify the product without prior notice. Users can obtain the latest version information from our official website or other effective channels before confirmation, and verify whether the relevant information is complete and up to date.

With any semiconductor product, there is a certain possibility of failure or failure under certain conditions. The buyer is responsible for complying with safety standards and taking safety measures when using the product for system design and complete machine manufacturing. The product is not authorized to be used as a critical component in life-saving or life-sustaining products or systems, in order to avoid potential failure risks that may cause personal injury or property loss.