


## **CMOS Leakage Current Protector A type**

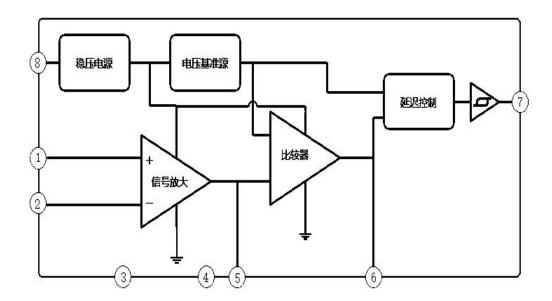
#### SSP54123A

## **General Description**

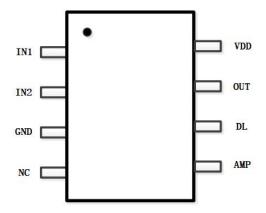
The SSP54123A is a CMOS high-performance leakage protection integrated circuit. It encompasses a voltage regulator, an amplifier circuit, a comparison circuit, a delay circuit, a self-recovery control circuit, a latch controller, and an SCR drive circuit. This configuration allows it to effectively detect both AC leakage and DC pulsating leakage. It is primarily utilized in Type A leakage protectors.



#### **Features**


- When there is a leakage signal, the OUT output pulse width is greater than 20ms and can directly drive the SCR
- Used to detect A-type (including AC-type) leakage signals
- Various types of leakage signal tripping accuracy consistency is good
- Strong anti-electromagnetic interference (EMC) capability
- Applicable to AC voltage of 50Hz~60Hz, also applicable to DC voltage
- Wide operating temperature range (-20 $\sim$ +85 °C)

#### Order Information


| Part No   | Package | Manner of Packing | Devices per reel |
|-----------|---------|-------------------|------------------|
| SSP54123A | SOP8    | Reel              | 2500PCS          |



## **Block Diagram**



## Pin Arrangement Diagram and Pin Assignment



| Pin No. | Pin Name | Description                                          |  |  |  |
|---------|----------|------------------------------------------------------|--|--|--|
| 1       | IN1      | Amplifier input 1                                    |  |  |  |
| 2       | IN2      | Amplifier input 2                                    |  |  |  |
| 3       | GND      | Ground                                               |  |  |  |
| 4       | NC       | No connection                                        |  |  |  |
| 5       | AMP      | Internal amplifier output, external filter capacitor |  |  |  |
| 6       | DL       | Delay adjustment, external capacitor                 |  |  |  |
| 7       | OUT      | Trip signal output                                   |  |  |  |
| 8       | VDD      | Power supply                                         |  |  |  |



## **Functional Description**

The SSP54123A leakage protector is a specialized integrated circuit designed to detect leakage currents on both the Live wire and Neutral wire. When a leakage current occurs, the Zero-Sequence Current Transformer (ZCT) senses this leakage and the secondary coil of the ZCT produces an output current. This output current serves as the input signal for the leakage protector chip. The leakage current may be in the form of DC, AC, or pulsating DC, which includes leakage signals at 0°, 90°, and 135° phase angles. If the Root Mean Square (RMS) value of the leakage current exceeds the rated current threshold specified by the leakage protector, the chip's output pin, labeled OUT, will trigger an action signal. The duration of this signal, or pulse width, will be greater than 20ms.

## **Absolute Maximum Ratings**

Unless otherwise specified, T<sub>amb</sub>= 25°C

| Davamatar                    | Value | Unit    |    |
|------------------------------|-------|---------|----|
| Parameter                    | Min   | Min Max |    |
| Operating Temperature        | -20   | +85     | °C |
| Storage Temperature          | -55   | +150    | °C |
| Voltage at any pin to ground | -0.8  | +6.5    | V  |
| Operating voltage            | /     | 8.0     | V  |
| Operating current            | /     | 8.0     | mA |

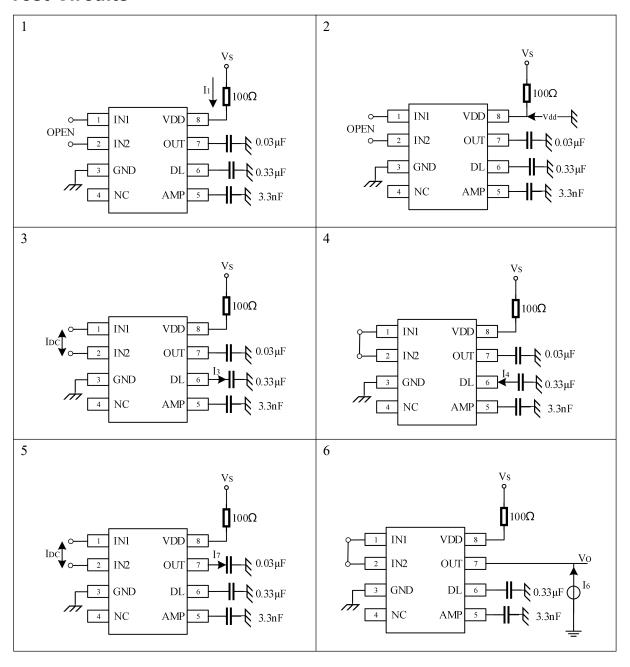
#### **Electrical Characteristics**

Unless otherwise specified, Tamb= 25°C

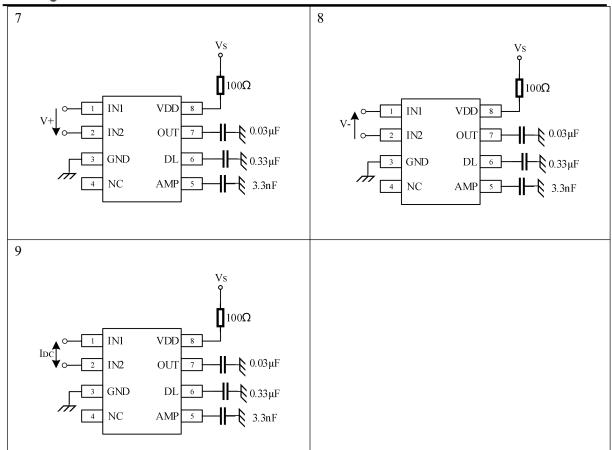
|                            |                             |                                             | Test     | Recommended Value |     |     |      |
|----------------------------|-----------------------------|---------------------------------------------|----------|-------------------|-----|-----|------|
| Parameter                  | Parameter Symbol Conditions |                                             | Circuits | Min               | Тур | Max | Unit |
| Supply Current             | I1                          | V <sub>S</sub> =5V                          | 1        | /                 | /   | 2.6 | mA   |
| Supply Voltage             | Vdd                         | V <sub>S</sub> =5V                          | 2        | 4.7               | 4.8 | 4.9 | V    |
| PIN6                       | 13                          | Vs=5.5V,                                    | 3        | 50                | /   | 68  | μΑ   |
| Output high current        | 15                          | Vin1-Vin2=30mV                              | 3        | 50                |     |     |      |
| PIN6                       | I4                          | Vs=5.5V,                                    | 4        | 0.6               | /   | 1.2 | μΑ   |
| Output low current         | 14                          | Vin1~Vin2 shorted                           | 4        |                   |     |     |      |
| PIN7 Output high curren    | I7                          | Vs=5.5V,<br>Vin1-Vin2=30mV                  | 5        | 2.0               | /   | 2.5 | mA   |
| PIN7 Output low level      | Vo                          | Vs=5.5V,Vin1~Vin2<br>Short circuit, I6=50mA | 6        | /                 | /   | 0.2 | V    |
| Positive operating voltage | V+                          | Vs=5.5V,Vin1-Vin2<br>(Note 1)               | 7        | 4.5               | 5.1 | 5.7 | mV   |
| Negative operating voltage | V-                          | Vs=5.5V,Vin1-Vin2<br>(Note 1)               | 8        | 4.5               | 5.1 | 5.7 | mV   |
| Latching time              | TON                         | Vs=5.5V,                                    | 9        | 20                | /   | /   | ms   |



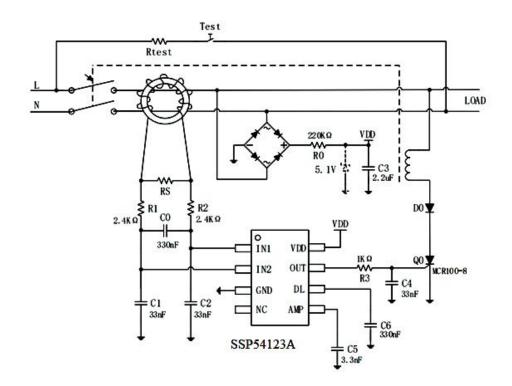
### SSP54123A


|  | Vin1-Vin2=30mV(Note |  |  |  |
|--|---------------------|--|--|--|
|  | 2)                  |  |  |  |

 $Note \ 1: When \ the \ DC \ voltage \ V+/V- \ between \ Vin1 \ and \ Vin2 \ is \ less \ than \ 4.5mV, \ the \ OUT \ pin \ outputs \ a \ low \ level.$ 

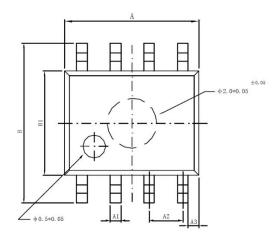

When V+/V- is greater than 5.7mV, the OUT pin outputs a high level.

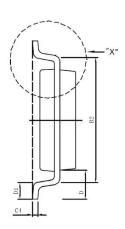
Note 2: TON is the duration of OUT output high level.


### **Test Circuits**

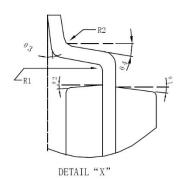








## **Application Circuits**






# Package Information (SOP8)









| Symbol | Min. (mm) | Max (mm) | Symbol | Min (mm) | Max (mm) |  |
|--------|-----------|----------|--------|----------|----------|--|
| A      | 4.95      | 5.15     | C3     | 0.10     | 0.20     |  |
| A1     | 0.37      | 0.47     | C4     | 0.20TYP  |          |  |
| A2     | 1.27T     | ΥP       | D      | 1.057    | ГҮР      |  |
| A3     | 0.41T     | ΥP       | D1     | 0.50TYP  |          |  |
| В      | 5.80      | 6.20     | R1     | 0.07TYP  |          |  |
| B1     | 3.80      | 4.00     | R2     | 0.07TYP  |          |  |
| B2     | 5.0T      | YP       | θ1     | 17°TYP   |          |  |
| С      | 1.30      | 1.50     | θ2     | 13°TYP   |          |  |
| C1     | 0.55      | 0.65     | θ3     | 4°TYP    |          |  |
| C2     | 0.55      | 0.65     | θ4     | 12°TYP   |          |  |
|        |           |          |        |          |          |  |



### Special Instructions

The company reserves the right of final interpretation of this specification.

## **Version Change Description**

Version: V1.0 Author: Yang Time: 2023.04.26

Modify the record:

1. First promulgation

## Statement

The information in the usage specification is correct at the time of publication, Shanghai Siproin Microelectronics Co.,Ltd. has the right to change and interpret the specification, and reserves the right to modify the product without prior notice. Users can obtain the latest version information from our official website or other effective channels before confirmation, and verify whether the relevant information is complete and up to date.

With any semiconductor product, there is a certain possibility of failure or failure under certain conditions. The buyer is responsible for complying with safety standards and taking safety measures when using the product for system design and complete machine manufacturing. The product is not authorized to be used as a critical component in life-saving or life-sustaining products or systems, in order to avoid potential failure risks that may cause personal injury or property loss.